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Abstract

An approximation to a distribution governed by temperature readings taken at the edge of a polygonal domain can
be constructed using interpolation functions which—in linear combination—satisfy first order, constancy and linearity
conditions. The values prescribed by the normed interpolation function should be bounded between zero and one. This
restriction is especially necessary when representing temperature, since negative values for temperature in Kelvin are
physically unacceptable. Compliant interpolation functions can be constructed on all convex polygonal domains
including those bounded by vertex and side-nodes.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Continuous problems governed by limited data require interpolation functions which capture as many of
the known properties of the distributed quantity as possible. In the case of heat flow the smoothness and
boundedness of the solution is well documented. Consequently, the assumed function should be greater or
equal to the smallest nodal value and less than or equal to the greatest nodal value throughout the domain.
Physical impossibilities, such as negative Kelvin, are avoided by such a representation. Also, temperature
distributions are necessarily minimum or maximum only along the boundary. Any discretization which
mars this smoothness should be avoided.

Additionally, an assumed interpolation should represent the one dimensional behavior of the boundary.
In a steady state temperature problem the one dimensional distribution of temperature between heat
sources is linear, the behavior along the boundary of a two dimensional domain should similarly be linear
(Haberman, 1998, pp. 13-15). Conventional interpolations and test functions do not consistently satisfy
these requirements (see Table 1).
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Table 1

Comparison of conventional approaches
Method Weakness Strength
Displacement based finite element method: e Requires mesh e Bounded
Triangular or quadrilateral mesh e Not smooth

e 3 or 4 nodes only

Large element methods: e Unbounded e No mesh
Lagrange or Coon’s element e Only specific shapes e Smooth
Boundary element method e Needs field equation solution e No mesh

Results along the boundary are approximate

The goal then is to construct a large element interpolation which is necessarily bounded, linear along the
edges and applies generally to different shapes. Any non-concave polygon with any number of nodes and
side-nodes can be represented by a bounded smooth function. The limitations of conventional displacement
finite element formulations are due in part to the arbitrary requirement that such functions be polynomial
in form (Courant, 1943). By extending the domain of functions to include rational and even irrational
polynomials algebraic shape functions for any polygonal area can be constructed.

2. Interpolation requirements

Given a set of shape functions ¢;(x,y) associated with the vertex coordinate {x;,y;}; define the shape
function such that each is single valued at its named coordinate:

¢i(xj,y;) = 0y = {(1) i;j’ (1)

Along the boundary adjacent to the single valued node the behavior should be linear. Let the adjacent node,
traveling cyclically around the boundary, be node {x;,}:

(it +x;(1 =), it + (1 — 1)) = ¢. (2)

Within the domain defined by the vertices &, the shape function should be smooth, bounded and be able, in
linear combination, to reproduce constant and linear fields, then V{x,y} € 2 (Irons and Ahmad, 1980):

0<¢ixy) <1, (3)
Z¢i(x7y) = 17 ind)i(xay) =x and Zyi¢i(x7y) =) (4)
i—1 i—1 —1

Any smooth function which satisfies these requirements can be used to approximate a temperature
distribution.

2.1. Polynomial shape functions

Rectangular and triangular C° shape functions do satisfy these interpolation requirements within ele-
ments governed by three or four nodes respectively. The shape functions are polynomials in normed
coordinates {&,n}.
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Fig. 1. Shapes with polynomial interpolations.

Triangle :  ¢'(&, 1) = asn + axé + a

5
Rectangle :  ¢'(&,17) = bané + bsn + ba& + by ©®

The constant coefficients {a;,a,,a3} and {b, by, b3, b4} are defined by the geometry of the domain and the
general shape function requirements according to Courant’s triangle (1943) and Taig’s quadrilateral (1961)
(see Fig. 1).

Ben =5 e € s(ebo) ©
and
gren = LEIED gre e 1. )

4 9
Using the area coordinate representation the positivity of the interpolation can be discerned by inspection.

The area of a triangle whose vertices lie at the points {a, b, c} is labeled A(a, b, ¢). Similarly A (¥, b, ¢) is the
area of the triangle whose vertices lie at points {x, v}, {xs, 1} and {x.,y.} respectively.

1| ¥« Ya 1 1x v 1
A(mb,c)éi X, » 1| and A()’c’,b,c)éi xp w1 (8)
X Yool xeo Yo ol

Also, the function A(¥,b,c) is zero valued along the line passing through the points » and c. The deter-
minant form is signed. If the vertices are arranged in a positive sense then the area is positive, otherwise it is
negative (Irons and Ahmad, 1980).

2.2. Rational polynomial formulation

The rational polynomial form is more flexible. It can be used to represent first order interpolations
within any convex two dimensional shapes. The shape function formulation for any convex polygon can be
derived generally as an algebraic collection of functions which are appropriately zero valued and linear
around the boundary lines (see Fig. 2) (Dasgupta, 2003b). Define a function s;(x, y) such that the function
is zero along all boundary lines except those adjacent to node i.

Sizj e iti1 (% + (01 = x;), 3 + (v — ;) =0, Ve € (0,1). 9)
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Fig. 2. Shapes with rational polynomial interpolations.

The product of functions which are zero on each of the non-adjacent boundary lines satisfies this criteria.
li(x,y) =Ax+By+C and [;(x;,y;) = Li(xis1,¥41) = 0. (10)

solving for 4 and B, C is an arbitrary scaling factor, find,
Ii(x,y) = DAR.i,i + 1), (11)
Let the arbitrary constant D = 1. Define:

) =[] 10)then ) = 0 (12)

where, n is the number of nodes and the numbering is cyclic, e.g. point i = 0 and point i = n are the same
point. The resulting shape function is

Ni(x,y) = F85i52) (13)

Zlkjsj (x,»)
=

The sum of all shape functions is one, this satisfies the constancy requirement (see Eq. (4)). Along the edges
adjacent to node-i the function should be linear along the boundary.

Ni(x; + t(xip1 — x;), 5 +t(vi1 — 1)) =Dt + E. (14)
The relationship between k; and k;,, can be derived from this condition.
kA — 1004+ 1) =ka(ii+1,i 4+ 2). (15)

Consequently, the linear edge requirement is satisfied if the constants are defined in terms of the vertex
areas:

kj:A(]_L]a]—’_l) (16)

Since A(a,b,c) is the area of the triangle whose nodes are in cyclic order, the constants are necessarily
positive. The method applies to any convex element with any number of nodes. It does not apply to concave
elements since the elongations of the boundary lines would prescribe zero values inside the domain.
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The bounded linear edged interpolation within any convex element with any number of nodes is:

Vk#j or j—1

A(jl,j,j+1)< II A()_c',k,kJrl))

N(l(x’y) =

J

. (17)
ZA(i—l,i,i+1)< II A()_c',/@k-l-l))
i=1 Vk+#i or i—1

Alternatively, this shape function representation can derived from projective geometry using external
intersection points (Wachspress, 1975). The solutions are valid within any convex quadrilateral domain.
The same rational polynomial form results.

The shape function for a triangle is also derivable from this formula. The general shape function for
node a of a convex quadrilateral (a, b, ¢, d) is:

Ad,a,b)A (R, b,c)A (X, c,d)
A(d,a,b)A(X, b,c)A(X,c,d) + Ala,b,c)A(X, c,d)A(X,d, a) '
+A(b,c,d)A(X,d,a)A(X,a,b) + A(e,d,a)A(X,a,b)A(X, b, c)

Ni(x,y) = (18)

The interpolation constructed for any trapezoid is equal to that found by isoparametric transformation.
The emergence of rational and even irrational polynomial forms is evident from the isoparametric trans-
formation. The projective geometry foundation for such formulations is discussed by Wachspress (1975).

2.3. Irrational polynomial formulation

On a one dimensional domain a piecewise linear interpolation describes the temperature distribution in a
bar subject to point sources exactly. Similarly, a boundary subject to the same point loading should exhibit
the same behavior. The simplest algebraic formulation which represents a gradient discontinuity is:

Va2 = |x].

Multiple discontinuities can be modeled as well:

V(1= Va2)" = |1 = |xl].

The functions are plotted in Fig. 3. The irrational, polynomial characterized by the square root can model
piecewise linear behavior. The polynomial and rational polynomial alone are insufficient.

\/
\/

Fig. 3. Gradient discontinuity.
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3. Isoparametric transformation in x—y coordinates

The limits and extents of the isoparametric formulation for a four-noded finite element are derived by
transforming the parametrized shape function from &- to x—y coordinates. This analytic inversion results
in a quadratic equation. The coefficients of this equation dictate whether the form of the shape function
is a polynomial, a rational polynomial or an expression containing a square root.

The shape function for a triangular element need not be constructed in a computational frame {&,n} it
can be constructed in local {x,y} coordinates directly:

AF, b, c)

¢Z(va’) =W7

V{x,y} € A(a, b, c).

In the Taig quadrilateral formulation the local coordinates are a function of the {#,(};

x—zx, &) oand y =" wNi(&n). (19)
i=1

Consequently, any shape functions resulting from the transformation satisfy the linearity requirements (see
Eq. (4)).
Let {s,¢} parametrize the Cartesian {x,y} coordinates according to:
Ni(s,t) = (1 =s)(1 = 1), Na(s, 1) = s(1 — 1),

(20)
Ni(s,t) = st, Ny(s,t) = (1 —s)t.

The formulation is the same as Eq. (7), except that the unit square is shifted such that s € (0,1) and

€ (0, 1). Let the equation for the third node be ¢, = N;(s(x, ), £(x,y)). Solving for the shape function ¢, in
terms of x and y using Eq. (19), the resulting equation is a quadratic in ¢, (see Appendix A.1 for a specific
example):

ap? — Bx,¥)¢, + p(x,») =0, (21)

where the coefficients are polynomials in (x, y):

o= (A(d,a,b) — Aa,b,c))(A(d,a,b) — A(e,d, a)),
B(x,y) = A(d,a,b)’ — AR, d,a)(A(d, a,b) — Ala,b,c)) — AR, a,b)(A(d, a,b) — Ae,d, a)), (22)
y(x,») = A(¥.d,a)A(X,a,b).

The coefficient o is constant, f(x,y) is linear and y(x,y) is quadratic in x and y. The area coordinate rep-
resentation (Eq. (21)) shows that the quantities must be positive within any non-concave shape. If the shape
is non-concave the areas described by A(i, j, k) are zero or positive if the node numbering is in a positive
sense.

3.1. Quadrilateral test case

The quadrilateral element can exhibit skewness, concavity and a side-node. The isoparametric trans-
formation applies only to non-concave shapes.

In a parallelogram (a, b, c¢,d) the subtriangles created by connecting opposite vertices are equal in area
(see Fig. 4):

A(d,a,b) = Ala,b,c¢) and A(d,a,b) = Alc,d, a).



E.A. Malsch, G. Dasgupta | International Journal of Solids and Structures 41 (2004) 2165-2188 2171

c

a

Fig. 4. Parallelogram.

For the parallelogram, the constant « is zero and The equation for f(x,y) is constant:

Plx,y) = A(d,a,b)z.

For this case, the shape functions derived using projective geometry and parametric coordinates are the
same. The shape function is indeed a polynomial:

A, d,a)A(Xa,b)

xX,y) = ; 23
ba(x,y) rd.ab) (23)
also,
_ A(X,d,a) _ A(X,a,b)
*Sa@dab) ™ T adab) @)

In a trapezoid (a, b, c,d), see Fig. 5, the subtriangles created by connecting opposite vertices are equal in
area:

A(d,a,b) = A(c,d, a).

Fig. 5. Trapezoid.
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Again, the constant o« is zero. Similarly:

B(x,y) = A(d,a,b)* — A(X,d,a)(n(d,a,b) — A(a,b,c)).
For the trapezoidal case, the shape function found using projective geometry and parametrized coordinates
are equal. The shape function is in rational polynomial form:
A(X,d,a) N (X, a,b)

. . (25)
A(d,a,b)” — A(X,d,a)(A(d,a,b) — Aa, b, c))

d)a(xvy) =

For a quadrilateral with no parallel sides o is not zero. For a convex quadrilateral the solution can be
constructed as a rational polynomial using the Wachspress method. Or, a result can be found using
parametrized coordinates as the branching solution of the roots of a quadratic equation:

x,y) £ X, ? — 4oy X,
5y P Wzay) /y) -

On a convex skew quadrilateral the boundary conditions are not satisfied by booth roots. On the boundary
da and ba the linear terms vanish and f(x,y) > 0. The negative root is zero, (8(x,y) — \/ﬁ(x,y)2 =0) and
the positive root is a positive constant (B(x, y) + v/ f(x,»)* = 2A(d,a,b)?). Along the boundary be (Fig. 6):

AX,dya) = (1 —t)A(b,d,a) +tA(c,d,a), 27)
AR, a,b) — (1 —t)A(b,a,b) + tA(c,a,b).

The discriminant term becomes:
Ad,a,b)*A(c,a,b) + t(A(c,d,a) — £(d,a,b)). (28)

The value of the negative root then is linear in ¢, ¢ (x,(1 —¢) +x.(t)) = ¢. The result is similar for the
boundary cd. The negative root at point ¢ then is unit valued: ¢, (x.,».) = 1. The negative root satisfies the
boundary conditions:

x,y) — X, 24y X,
5y \/ﬂ(zay) ’5y) )

For a specific example see Appendix A.2.

b

Fig. 6. Skew.
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4. Form of the shape function

In 1975, Wachspress introduced a rational polynomial formulation for finite elements which applies
consistently to any convex n-sided polygon; it does not apply to elements with a side-node. The same
publication describes irrational shape functions (Wachspress, 1975, pp. 245-253). Similar to the isopara-
metric transformation, a shape function is calculated by projecting a three dimensional shape on a two
dimensional plane. Unlike the presented method, Wachspress’ three dimensional shape is curved. The shape
function for the side-node is calculated, and promptly canceled out of the representation. The linear
boundary conditions are not captured along the edge with the side-node. Nevertheless, some ingenious,
non-convex, elements with curved sides can be constructed.

Wachspress realized the limitations of the rational polynomial formulation with respect to “ill-set ele-
ments”’, non-convex polygons and polycons (Wachspress, 1975, p. 247). Just as the polynomial shape
function cannot be applied to more than a few basic shapes, the rational polynomial method also fails when
a polygon is non-convex.

Following the series of Hermite—Padé type approximations leads to a quadratic form, and an irrational
shape function. Any piecewise continuous function can be represented by an infinite power series

f) = ax", a#0, | <R (30)
n=0

The Padé approximate of the same function can be written as:

k J
D OB (x) =Yy = OV, (31)
n=0 n=0

where O(-) is an order operator. The coefficients f5; and 7, are functions of the coefficients of the power series
a;. The approximation is valid if the function is not evaluated near the denominator zeros (Zﬁ:o px"=0)
(Shafer, 1974). The zeros of the denominator lie strictly outside the convex polygonal domain in the ra-
tional polynomial representation (Wachspress, 1975).

A polynomial representation cannot satisfy the boundary conditions of a polygon which is not suffi-
ciently symmetric. The rational polynomial form cannot be used to satisfy the boundary conditions in a
non-convex polygon. The next order construction is known as the Quadratic Shafer or Hermite—Padé
approximate:

k J

D oaxf(x) = > B () + D" = OV, (32)

n=0 n=0 n=0

The evaluation of the approximation is valid only away from the singularities Zizo o,x" = 0, and along the
branch which satisfies the boundary conditions (Shafer, 1974). For the presented rational polynomial
representation within a quadrilateral, the « polynomial is a constant and the branch which satisfies the
boundary conditions exactly can be determined (see Eq. (29)). Using the irrational polynomial represen-
tation a convex polygon with any number of side-nodes and linear boundary conditions can be described.
Accordingly higher order behaviors can be modeled on any non-concave two dimensional domain without
compromising the smoothness and boundedness requirements necessary for the representation of tem-
perature distributions.
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5. Side-node

If the quadrilateral degenerates into an element with a side-node the Wachspress convex polygon method
fails. The constant coefficient which weights the side-node becomes zero: A(2,3,4) = 0. Accordingly, the
shape function for the side-node is N;(x,y) = 0. Let point {x.,y.} be the side-node located a distance u
along line bd:

{xcay(‘} = {xbvyb}(l - u) + {xdvyd}u' (33)
The parametrized coordinate method produces the following coefficients:
o=u(l—u),
A%, a,b) A%, d,a)
=u——""+ (1 —u)—/———"7F=5—1
P N I (34)

AR, d,a) A(X a,b)
A(b,d,a) A(d,a,b)’
Choose the branch which satisfies the nodal point values (see Eq. (29)). Test to make sure this side-node

formulation satisfies the shape function conditions, Egs. (1), (2) and (4).
Evaluating at the nodal points (note 0 < u < 1):

(%, ) =

¢c‘(xa7ya) = ul(l__\/uT) = 0, Q{)(,(X},,y})) = Z(Il/z—z) = 07
(35)
u(l —u) — 1 —u)— 1—u)?
d)c(xcayc) = % - 1, ¢C(xd,yd) = ( 2)u(1 _(u) ) — O

Along the boundary, the coefficient c(x, y) is zero valued along the boundaries from point-(a) to point-(b)
and from point-(d) to point-(a):
Blx.y) =\ By’ =0, Vp(x,y)>0 and ox#0. (36)
Along the boundary from point-() to point-(d):
(t+u—2ut) — |t —u|
2u(1 — u) ’

the function is zero when ¢ = 0 and ¢ = 1, single valued at = u and otherwise linear along the boundary.
Solving for the remaining shape functions using the same method as for ¢ (x,y), find:

(37)

A%, b A(¥,b,d) A%, d,a)
Dylx,y) = 2ab.d)’ by(x,y) = m (I —u)o.(x,y) and
bae) = g Z f,)) . (5.9) (39)

The constant and linear fields can be reproduced according to Eq. (4).

The formulation applies even when the side-node and vertex node overlap. If the side-node degenerates
into a triangle then the constant o = 0. The resulting shape function is valid. It satisfies the boundary
conditions and is bounded.

A%, b, )N (X, e, d)

S ) = e be) — 6(F.d)
Only the boundary point where d = c is ill behaved.

(39)
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5.1. Extended side-node formulation

The requirements for a general construction of the side-node formulation are boundedness and the
linearity requirement (see Eq. (4)). Eq. (34) can be rewritten such that the shape functions depend only on
the parameter u and the shape functions for the triangle N;(¥). Consequently, the extent to which the
conditions are satisfied depends on the shape functions for the 3-noded triangle without a side-node.

o AR, k)
N ]

The shape functions N;(x, y) are single valued only at each named node (7). On all boundary edges which are
not adjacent to node (i) the value of the function N;(x,y) is zero. Any shape function ¢; which is similarly
bounded and satisfies these boundary conditions on a domain Q can be used to construct a bounded and
smooth shape function for any side-node located on the boundary of Q.

The four-noded triangle formulation can be extended to any domain where the shape functions for the
parent element, without the side-node, is known (see Fig. 7). The shape function for the first side-node
is defined in terms of the vertex nodes which share the boundary with the side-nodes.

(L= (1= wg) —ug) ) — /(1 — (1~} —ud)_ )’ —dudy_,(1 - u)g);

where 0 < N;(¥) < 1 for all points ¥ in the triangle A(i, j, k). (40)

= . 41
The new shape functions for the parent nodes are updated with respect to the side-node:
bi=¢; — (1 —u)p, and ¢, = ¢, | —udy. (42)

No other shape functions are affected. The integration method applied to the encompassing shape without
side-nodes can be applied directly to the domain. The discontinuity in slope occurring at the side-node does
not prevent integration. Applying this method recursively allows for the representation of any number of
side-nodes on any n-gon figure (see Figs. 8-10 and the example in Appendix A.4).

The discriminant is positive if ¢; and ¢; | are appropriate shape functions for the parent element:

(1= (1= w)e] —ud;_,)>dud_,(1 —u)g;. (43)

If the parent functions are smooth, bounded and linear on the boundary and single valued only at their
respective named nodes, then their sum must be bounded:

0< e + ¢ <1 (44)

Fig. 7. Side-node shape functions.
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Fig. 8. One side-node influence.
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Fig. 10. Selected shape functions for a pentagonal element with side-nodes.
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The parameter u is necessarily bounded between 0 and 1 (see Eq. (33)). The worst comparison occurs for
the largest values for the shape functions, let ¢; , = s and largest ¢; = (1 —s):



E.A. Malsch, G. Dasgupta | International Journal of Solids and Structures 41 (2004) 2165-2188 2177

nodes: {{0,0},{1,0},{0,1}}

l—-x—y

nodes: {{0,0},{3,0},{1,0},{0,1}}

1-32—4y+/922 + 62 (—1 +2y) + (1 +2y)?
2

—
-
N
w

4 nodes: {{0,0},{3,0},{1,0},{0,1},{0,1}}

Tty , V92 + 67 (—1+2y) + (1+2y)?
2 2

V1622 + (1—5y)* + 82 (1+5)
1 2 3 + 2

Fig. 11. Shape functions for the vertex of a triangle.

(1—(1—u)(1 —s) —us)” = 4u(l —u)s(1 —s). (45)
The expression simplifies to:
(s—u)*>0. (46)

The discriminant is greater than zero throughout the domain and equal to zero only at the side-node where
s = u. Consequently any interpolations which are smooth and bounded over a given domain can be
combined to construct the shape function for any side-node. For an example construction see Figs. 11 and
12.

6. Conductivity matrix

Convergent shape functions and consistent strain matrices can be formulated for all non-concave
quadrilaterals. For the temperature distribution application, the governing operator is the Laplacian.

Vu(x,y) = 0. (47)
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nodes: {{0,0},{3,0},{1,0},{0,1}}

-3 (—1 ~2-2y+/93% + 62 (-1+29) + (1+2y))
Z

nodes: {{0,0},{3,0},{2,0},{1,0},{0,1}}
14272+ 34y
20
171/922 + 62 (—1 +2y) + (1 +2y)?
20

145 — 360 = + 225 22
V2 +132y + 252z y + 196 92
T30 +(—17+ 21z — 98y) *

V922 + 63 (—1+2y) + (1+2y)?

nodes: {{0,0},{%,0},{3,0},{3,0},{1,0},{0,1}}

—13+39z+ 58y
40

39
-5 V922 + 62 (—1+2y) + (1+2y)°

145 — 360 = + 225 22
V2 +132y + 252z y + 196 2
20 (=17 + 21z — 98y) *

\/91‘2-}—633 (-1+2y)+(1+2y)°
5— 42z + 153 22

V2 +80y + 276 z y + 148 y2
8 +(3—45z—T0y)*

V92 + 62 (—1+2y) + (1+2y)

Fig. 12. Shape functions for the side-node of a triangle.

The heat sources applied along the boundary are given by a function f(¢) where ¢ is a parameter which
travels along the boundary of the polygon. Along a given side ij:

x=1Dx;+ (1 -1y, and y =Dy, + (1 -ty (48)

Let the heat distribution u(x, y) be approximated by an interpolation function N; over a polygonal domain
with m sides and p side-nodes:
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m+p

y) zZ:ul']vi(xvy)a (49)

where, u; = u(x;, ;).
The conductivity matrix is constructed as follows:
ONi(x,y) ON;(x,y) | ONi(x,y) ON;(x,y)

hyj = Ox Ox dy )%

Integrating over the domain:
Si/:/hijdA. (51)
A

Integration can be performed over any polygonal domain according to the divergence theorem (Dasgupta,
2003a). Overcoming the algebraic and numerical difficulties associated with integrating a function con-
taining boundary singularities on a convex domain is the subject of further research. Only examples
on square domains are presented.

The conductivity matrix constructed from such a formulation is defined by n — 1 positive eigenvalues
and one zero eigenvalue corresponding to the constant temperature condition. For problems of heat flow
where boundary temperatures, not heat sources, are given the irrational interpolation allows for a smooth
and bounded guess as to the interpolation of heat values over any polygonal domain.

6.1. Test case

Let the temperature distribution in a homogenous medium be governed by:

Vulx,y) =0, >
and boundary conditions
u(H,p) =0, u(0,y) =0, u(x.0)=sin (") and u(x.L)=0. (53)

The unique solution to this toy problem on a rectangular domain height # = 1 and length L =1 is:
__sin(nx) sinh(z(1 — y))
ulx,y) = sinh () '
See Fig. 13.

An approximate solution, based on four nodal points, can be constructed using the following shape
functions:

{(=14+x)(=1+y), x—xp, xp, y —xp}. (55)
The conductivity matrix is:
-(3) —(
|
=( 3
= (

(54)

~—

W= WIS
~—
|

~
|
Wis N /S o/~

W= W W=
~—

)

1
3
D -

~—

1
3)
The eigenvalues are:

eig([S]*) — {0,1.33,2,2}. (57)
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Fig. 13. Exact temperature distribution.

Fig. 14. Four nodes.

The constant temperature case is captured. Matrix [S] is singular as expected. The approximation does not
capture any quadratic or higher order features of the solution (see Fig. 14).
A five noded element makes a better approximation. The shape functions are:

1+2x(=1+y) =3y + \/—4x(—1 +y) + 421+ ) + (1 +y)
2 )

1+y— \/—4x(—1 +y) + 421+ ) + (1 +),

1214 y) — A0 A1)+ (L)
2 )

Xy, y =Xy . (58)
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The conductivity matrix is:

1.39761 —0.630998 —0.247489  —0.427037 —0.0920873
—0.630998 2.21375 —0.630998  —0.475875  —0.475875

[S]5 = | —0.247489 —0.630998 1.39761 —0.0920873  —0.427037 |. (59)
—0.427037 —0.475875 —0.0920873 1.33 —0.335
—0.0920873 —0.475875 —0.427037 —0.335 1.33

Its eigenvalues are:
eig([S]°) — {2.79,2.00,1.57,1.32,0}. (60)

Again the singularity is preserved. The non-linear features of the solution also begin to be represented (see
Fig. 15).

The arrangement of nodes need not be symmetric (see Fig. 16). For a six noded element the shape
functions are:

|

Fig. 15. Five nodes.

|

Fig. 16. Six nodes.
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{ 1+ 2x(—14y) =3y + \/—4x(—l + ) +42(=1 4 ) + (1 +y)
2 b

1+y- \/—4x(—1 +y) 42 (=1 +3) + (1 +y),

“34+x3-2)—y+ \/_4x(_l+y) +4x*(=1+y)" + (1 +y) +\/1_X+x2<%+(—l+y)y>,

2
1
1X+x2<4+(1 +y)y>, yxy}

1 1
2x2\/1x+x2(4+(1+y)y), 1+x(2+y) +

«

(61)
The conductivity matrix is:
1.39761 —0.630998 —0.124766 —0.245446 —0.304315 —0.0920873
—0.630998 221375 —0.377704 —0.506588 —0.222581  —0.475875
[8}6 _ | —0.124766 —0.377704 137868  —0.719549  0.0197986  —0.176432 62)

—0.245446  —0.506588 —0.719549  2.95404 —0.981247  —0.50121
—0.304315 —0.222581 0.0197986 —0.981247 1.57277 —0.0843947
—0.0920873 —0.475875 —0.176432 —0.50121 —0.0843947 1.33

The eigenvalues are:
eig(|S]°) — {3.73,2.71,1.57,1.5,1.32,0}. (63)

The singularity is preserved.
Any number of side-nodes can be added to improve the solution. For example the eight noded element
(Fig. 17) and the 12 noded element, (Fig. 18). The associated eigenvalues of each conductivity matrix is:

eig([S]S) — {2.76,2.06,2.06,1.83,1.23,1.08,1.08,0} (64)
and

eig([S]'?) — {2.34,2.08,2.08,1.87,1.49,1.28,1.28,1.26,0.99,0.81,0.81,0}. (65)

> <

Fig. 17. Eight nodes.
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Fig. 18. Twelve nodes.

All of the solutions preserve the zero energy conditions. Notice also the eigenvalues are within the same
magnitude and all lie between two positive constants, 1/2 and 4.

A solution constructed using Lagrange interpolates does not preserve the singularity of the conductivity
matrix and predicts greater negative values along the boundary:

eig([S]}) = {5.33,4.18,4.18,2.57,1.33,1.02,1.02,0.98} (66)

and
eig([S]}z) = {7.81,6.46,6.46,3.92,3.38,2.89,2.89,2.53,1.06, 1.06, 1.03,1.01}. (67)

The eigenvalues are all positive, but the zero energy condition is not captured. Also the eight node element
solution looks qualitatively closer to the actual one than the 12 node element solution does (see Figs. 19 and
20). Also, the positive eigenvalues lie in a wider range, between 1/2 and 8.

All the approximations predict negative values within the domain. For the linear edged approximation,
as nodes are added higher order behaviors of the domain are captured and the predicted behavior becomes
less negative. The range of values predicted for the temperature distribution over the square domain are
presented in Table 2.

For the side-node formulation, as the number of nodes increases the maximum negative value seems to
tend to zero and the area over which the solution is negative within the domain decreases. While the

Fig. 19. Eight node.
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Fig. 20. Twelve node.

Table 2
Range of predicted boundary values
Side-node formulation Lagrange element
4 node {-0.32,0.32} {-0.32,0.32}
5 node {-0.23,0.50} -
6 node {-0.23,0.54} -
8 node {-0.20,0.52} {-0.25,1.11}
12 node {-0.20,0.48} {-0.22,0.82}

magnitude of the most negative point in the domain for eight node and 12 node representations is equal,
much larger segments of the eight node element boundary are negative than the 12 node element. Alter-
natively, in the Lagrange element formulation the 12 node element contains more negative values in the
interior of the domain than the eight node Lagrange element. The Lagrange element converges to the
correct solution in an oscillatory manner, this pathology has been observed in other applications as well
(MacNeal, 1993).

Also the range of values discovered using the side-node formulation is between 0.64 and 0.88, the range
for the Lagrange element is between 0.64 and 1.36 and the maximum value in the solution is 1. In this
example the side-node reproduces the bounds of the solution more closely than the Lagrange element
method does.

The solutions were constructed using Mathematica, the integration is performed algebraically for the
four node case and numerically using Gaussian Quadrature for the more than four node cases. The stability
of numerical integration decreases around the singular boundary points. Nevertheless, careful integration
can return convergent results. The computation time was equivalent for the Lagrange and exact side-node
elements for the given number of nodes.

7. Conclusion

The form of the finite element shape function cannot be limited to a polygonal form if the domain being
described is neither triangular nor rectangular. Rational polynomials and square roots of polynomials
provide a consistent and conformal shape function basis for non-concave shapes. Consequently, this study
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extends the class of elements for which closed form shape functions can be constructed. By resisting tes-
sellation of the domain, a higher order representation is possible. Such elements can be applied to boundary
value problems including temperature distributions. Unlike Lagrange element formulations, the singularity
of the conductivity matrix is preserved.
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Appendix A. Examples

The isoparametric transformation in x—y coordinates and the smooth side-node representation can be
derived algebraically. Some test cases are included.

A.1. Algebraic transformation

Solving for the shape function for a parallelogram in local Cartesian coordinates, let the points a, b, ¢
and d be located at the following points respectively:

{{_170}7 {Ov _1}7 {170}7 {07 1}}
Using Eq. (19):

(1= ~n) 1+ +n) n+{
x= (D) w e (D s =

1+ —n) (1= +n) n—(
J’—(—l)*f+(1)* 4 =7

Solving for ¢ and # in terms of x and y:
E=x—y, n=x+y and &n=x"—)".

The shape function is a polynomial.
For the shape function of a trapezoid in local Cartesian coordinates, let the points a, b, ¢ and d be
located at the following points respectively:

{{0,0},{4,0},{3,1},{2,1}}.

Using Eq. (19):
9+ n+58 -3¢ 1+

x= ) and y= 5
Solving for # and ¢&:
4—-2x+y (4—=2x+y)(—=1+2y)
—_ =—142 =
gy "ot and —4+3y

The shape function is a rational polynomial.
For the shape function of a trapezoid in local Cartesian coordinates, let the points a, b, ¢ and d be
located at the following points respectively:

{{0,0},{1,0},{2,1},{0,2}}.

E=
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Using Eq. (19):

_ B4+ +9

= 2 ,

_—(0+m(=3+9)
y= 2 :

Solving for # and ¢&:

E=T4+x+y+/2+2(-24y) + (2 +y),

4 x+yF 2422+ + (2 +y)
- 2

and

84 x—TyF S/ 4+ 2x(-2+y) + (2 +y)
n= .
2

The shape function contains the square root of a polynomial, there are two roots.

A.2. Skew quadrilateral by isoparametric transformation and Wachspress formulation

Given a set of test points:

{{xa;yzz}a {xbayb}a {x6'7yc}7 {xdyyd}} = {{0,0}, {1’0}7 {3/27 3/2}’ {07 1}} (Al)

The shape function ¢,(x,y) found using parametrized coordinates:

{5+x+y—2 2 =2x(=24 )+ 2+, S+x+y+2 x2—2x(—2—|—y)+(2—|—y)2}. (A2)

The shape function ¢,(x,y) evaluated at the vertices:

d)a(xaaya) = {179}7 %(meb) = {07 12}’ d)a(xm%) = {07 16} and d)a(xdvyd) = {Oa 12}' (A3)

Only the first root 2=)=V/ (2 V) 4009 gatisfies the boundary conditions. The continuous shape function,
derived from the Wachspress method, for the convex domain, satisfying all the boundary conditions, and
the constancy and linearity requirements is:

—(B3+x=3y)(-3+3x—y))
33+x+y) '

by(x,y) = (A.4)

Consequently, two different valid interpolations can be constructed.

A.3. Triangle with four nodes

{{-1,0},{-1/2,1/4},{1/2,3/4},{0,2}}. (A.5)
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The associated shape functions are:

—1—4x — 4y +V3/=5+4x(1 + 3x) + 16y

b (x,) = 3
11+ 2x + 8y — 3v/3y/=5 + 4x(1 + 3x) + 16y
()bb(xay) = 12 9
(A.6)
74 10x — 8y +v/3/=5 + 4x(1 + 3x) + 16y
¢.(x,y) = D :
—1—x4+2
ba(x,¥) =fy-

The functions are smooth within the triangular domain.

A.4. Unit square example

The parametrization of the domain is the same as for the shape functions of the element free of side-
nodes. For example find the shape functions for side-nodes on a unit square from the shape functions at the
vertices for an element with no side-nodes, Eq. (20). For the shape function for a side-node on side 1-2, let u
be u =0 at node-1 and u = 1 at node-2 and vary linearly along the edge. Substituting into Eq. (41) the
equation for the side-node is:

Cls(mud (=1 42u) TSR 25w 2m)

P (s,1) = 2ula 1) - 1) . (A7)

The corresponding shape functions then left and right of the side-node respectively, according to Eq. (42),
are:

—1—|—s(1—t+u)—|—\/1+s2(—1—|—t+u)2+2s(—1+t—|—u—2tu)

d)lll(sat) = 2 )
(A.8)
. l—|—s(—1—t—|—u)—\/1—|—s2(—1—|—t—|—u)2—|—2s(—1—i—t—|—u—2tu)
Puls:) = 20u—1) '
Foru=1/2:

¢?(S,t)=2—S—2\/1_S+s2(t_1/2)2’
Bl(0) = 5(3/2= 1) = 14/ =5+~ 1)), (A.9)

G(5,0) = 5(1/24 1) = L+ /1 —s+ 21 = 1/2)%

To derive another shape function for another side-node to the left of the original placed by u let another
parameter v span the distance between the node to the left of the side-node, node-1, and the side-node itself,
node-m. Again, substitute into Eq. (41) to find the shape function. An order of complexity added to the
basis functions then is the square root term.
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