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Interpolations for temperature distributions: a method
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Abstract

An approximation to a distribution governed by temperature readings taken at the edge of a polygonal domain can

be constructed using interpolation functions which––in linear combination––satisfy first order, constancy and linearity

conditions. The values prescribed by the normed interpolation function should be bounded between zero and one. This

restriction is especially necessary when representing temperature, since negative values for temperature in Kelvin are

physically unacceptable. Compliant interpolation functions can be constructed on all convex polygonal domains

including those bounded by vertex and side-nodes.
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1. Introduction

Continuous problems governed by limited data require interpolation functions which capture as many of

the known properties of the distributed quantity as possible. In the case of heat flow the smoothness and

boundedness of the solution is well documented. Consequently, the assumed function should be greater or

equal to the smallest nodal value and less than or equal to the greatest nodal value throughout the domain.

Physical impossibilities, such as negative Kelvin, are avoided by such a representation. Also, temperature

distributions are necessarily minimum or maximum only along the boundary. Any discretization which
mars this smoothness should be avoided.

Additionally, an assumed interpolation should represent the one dimensional behavior of the boundary.

In a steady state temperature problem the one dimensional distribution of temperature between heat

sources is linear, the behavior along the boundary of a two dimensional domain should similarly be linear

(Haberman, 1998, pp. 13–15). Conventional interpolations and test functions do not consistently satisfy

these requirements (see Table 1).
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Table 1

Comparison of conventional approaches

Method Weakness Strength

Displacement based finite element method: • Requires mesh

• Not smooth

• 3 or 4 nodes only

• Bounded

Triangular or quadrilateral mesh

Large element methods: • Unbounded

• Only specific shapes

• No mesh

• SmoothLagrange or Coon�s element

Boundary element method • Needs field equation solution

• Results along the boundary are approximate

• No mesh
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The goal then is to construct a large element interpolation which is necessarily bounded, linear along the
edges and applies generally to different shapes. Any non-concave polygon with any number of nodes and

side-nodes can be represented by a bounded smooth function. The limitations of conventional displacement

finite element formulations are due in part to the arbitrary requirement that such functions be polynomial

in form (Courant, 1943). By extending the domain of functions to include rational and even irrational

polynomials algebraic shape functions for any polygonal area can be constructed.
2. Interpolation requirements

Given a set of shape functions /iðx; yÞ associated with the vertex coordinate fxi; yig; define the shape
function such that each is single valued at its named coordinate:
/iðxj; yjÞ ¼ dij ¼
1 i ¼ j;
0 i 6¼ j:

�
ð1Þ
Along the boundary adjacent to the single valued node the behavior should be linear. Let the adjacent node,
traveling cyclically around the boundary, be node fxk; ykg:
/kðxkt þ xjð1� tÞ; ykt þ yjð1� tÞÞ ¼ t: ð2Þ
Within the domain defined by the vertices D, the shape function should be smooth, bounded and be able, in

linear combination, to reproduce constant and linear fields, then 8fx; yg 2 D (Irons and Ahmad, 1980):
0 < /iðx; yÞ < 1; ð3Þ
Xn
i¼1

/iðx; yÞ ¼ 1;
Xn
i¼1

xi/iðx; yÞ ¼ x and
Xn
i¼1

yi/iðx; yÞ ¼ y: ð4Þ
Any smooth function which satisfies these requirements can be used to approximate a temperature

distribution.
2.1. Polynomial shape functions

Rectangular and triangular C0 shape functions do satisfy these interpolation requirements within ele-

ments governed by three or four nodes respectively. The shape functions are polynomials in normed
coordinates fn; gg.



Fig. 1. Shapes with polynomial interpolations.
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Triangle : /tðn; gÞ ¼ a3gþ a2nþ a1
Rectangle : /rðn; gÞ ¼ b4gnþ b3gþ b2nþ b1

ð5Þ
The constant coefficients fa1; a2; a3g and fb1; b2; b3; b4g are defined by the geometry of the domain and the

general shape function requirements according to Courant�s triangle (1943) and Taig�s quadrilateral (1961)
(see Fig. 1).
/t
aðn; gÞ ¼

Mð~n; b; cÞ
Mða; b; cÞ ; 8fn; gg 2 Mða; b; cÞ ð6Þ
and
/r
i ðn; gÞ ¼

ð1� nÞð1� gÞ
4

; 8fn; gg 2 ð�1; 1Þ: ð7Þ
Using the area coordinate representation the positivity of the interpolation can be discerned by inspection.
The area of a triangle whose vertices lie at the points fa; b; cg is labeled Mða; b; cÞ. Similarly Mð~x; b; cÞ is the
area of the triangle whose vertices lie at points fx; yg, fxb; ybg and fxc; ycg respectively.
Mða; b; cÞ¼^ 1

2

xa ya 1

xb yb 1

xc yc 1

������
������ and Mð~x; b; cÞ¼^ 1

2

x y 1

xb yb 1

xc yc 1

������
������: ð8Þ
Also, the function Mð~x; b; cÞ is zero valued along the line passing through the points b and c. The deter-
minant form is signed. If the vertices are arranged in a positive sense then the area is positive, otherwise it is

negative (Irons and Ahmad, 1980).

2.2. Rational polynomial formulation

The rational polynomial form is more flexible. It can be used to represent first order interpolations

within any convex two dimensional shapes. The shape function formulation for any convex polygon can be

derived generally as an algebraic collection of functions which are appropriately zero valued and linear
around the boundary lines (see Fig. 2) (Dasgupta, 2003b). Define a function siðx; yÞ such that the function

is zero along all boundary lines except those adjacent to node i.
si6¼j & i6¼j�1ðxj þ tðxjþ1 � xjÞ; yj þ tðyjþ1 � yjÞÞ ¼ 0; 8t 2 ð0; 1Þ: ð9Þ



Fig. 2. Shapes with rational polynomial interpolations.
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The product of functions which are zero on each of the non-adjacent boundary lines satisfies this criteria.
liðx; yÞ ¼ Axþ By þ C and liðxi; yiÞ ¼ liðxiþ1; yiþ1Þ ¼ 0: ð10Þ
solving for A and B, C is an arbitrary scaling factor, find,
liðx; yÞ ¼ DMð~x; i; iþ 1Þ: ð11Þ

Let the arbitrary constant D ¼ 1. Define:
rðx; yÞ ¼
Yn
j¼1

ljðx; yÞ then siðx; yÞ ¼
rðx; yÞ

liðx; yÞli�1ðx; yÞ
; ð12Þ
where, n is the number of nodes and the numbering is cyclic, e.g. point i ¼ 0 and point i ¼ n are the same
point. The resulting shape function is
Niðx; yÞ ¼
kisiðx; yÞPn

j¼1

kjsjðx; yÞ
: ð13Þ
The sum of all shape functions is one, this satisfies the constancy requirement (see Eq. (4)). Along the edges

adjacent to node-i the function should be linear along the boundary.
Niðxi þ tðxiþ1 � xiÞ; yi þ tðyiþ1 � yiÞÞ ¼ Dt þ E: ð14Þ
The relationship between ki and kiþ1 can be derived from this condition.
kiþ1Mði� 1; i; iþ 1Þ ¼ kiMði; iþ 1; iþ 2Þ: ð15Þ
Consequently, the linear edge requirement is satisfied if the constants are defined in terms of the vertex

areas:
kj ¼ Mðj� 1; j; jþ 1Þ: ð16Þ
Since Mða; b; cÞ is the area of the triangle whose nodes are in cyclic order, the constants are necessarily
positive. The method applies to any convex element with any number of nodes. It does not apply to concave

elements since the elongations of the boundary lines would prescribe zero values inside the domain.
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The bounded linear edged interpolation within any convex element with any number of nodes is:
Nn
j ðx; yÞ ¼

Mðj� 1; j; jþ 1Þ
Q

8k 6¼j or j�1

Mð~x; k; k þ 1Þ
 !

Pn
i¼1

Mði� 1; i; iþ 1Þ
Q

8k 6¼i or i�1

Mð~x; k; k þ 1Þ
 ! : ð17Þ
Alternatively, this shape function representation can derived from projective geometry using external

intersection points (Wachspress, 1975). The solutions are valid within any convex quadrilateral domain.

The same rational polynomial form results.

The shape function for a triangle is also derivable from this formula. The general shape function for

node a of a convex quadrilateral ða; b; c; dÞ is:
N 4
a ðx; yÞ ¼

Mðd; a; bÞMð~x; b; cÞMð~x; c; dÞ
Mðd; a; bÞMð~x; b; cÞMð~x; c; dÞ þ Mða; b; cÞMð~x; c; dÞMð~x; d; aÞ

þMðb; c; dÞMð~x; d; aÞMð~x; a; bÞ þ Mðc; d; aÞMð~x; a; bÞMð~x; b; cÞ

� � : ð18Þ
The interpolation constructed for any trapezoid is equal to that found by isoparametric transformation.

The emergence of rational and even irrational polynomial forms is evident from the isoparametric trans-
formation. The projective geometry foundation for such formulations is discussed by Wachspress (1975).
2.3. Irrational polynomial formulation

On a one dimensional domain a piecewise linear interpolation describes the temperature distribution in a

bar subject to point sources exactly. Similarly, a boundary subject to the same point loading should exhibit

the same behavior. The simplest algebraic formulation which represents a gradient discontinuity is:
ffiffiffiffi
x2

p
¼ jxj:
Multiple discontinuities can be modeled as well:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�

ffiffiffiffi
x2

p
Þ2

q
¼ j1� jxjj:
The functions are plotted in Fig. 3. The irrational, polynomial characterized by the square root can model

piecewise linear behavior. The polynomial and rational polynomial alone are insufficient.
Fig. 3. Gradient discontinuity.
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3. Isoparametric transformation in x–y coordinates

The limits and extents of the isoparametric formulation for a four-noded finite element are derived by

transforming the parametrized shape function from n–g to x–y coordinates. This analytic inversion results
in a quadratic equation. The coefficients of this equation dictate whether the form of the shape function

is a polynomial, a rational polynomial or an expression containing a square root.

The shape function for a triangular element need not be constructed in a computational frame fn; gg it

can be constructed in local fx; yg coordinates directly:
/t
aðx; yÞ ¼

Mð~x; b; cÞ
Mða; b; cÞ ; 8fx; yg 2 Mða; b; cÞ:
In the Taig quadrilateral formulation the local coordinates are a function of the fg; fg;
x ¼
Xn
i¼1

xiNiðn; gÞ and y ¼
Xn
i¼1

yiNiðn; gÞ: ð19Þ
Consequently, any shape functions resulting from the transformation satisfy the linearity requirements (see

Eq. (4)).

Let fs; tg parametrize the Cartesian fx; yg coordinates according to:
N1ðs; tÞ ¼ ð1� sÞð1� tÞ; N2ðs; tÞ ¼ sð1� tÞ;
N3ðs; tÞ ¼ st; N4ðs; tÞ ¼ ð1� sÞt:

ð20Þ
The formulation is the same as Eq. (7), except that the unit square is shifted such that s 2 ð0; 1Þ and

t 2 ð0; 1Þ. Let the equation for the third node be /c ¼ N3ðsðx; yÞ; tðx; yÞÞ. Solving for the shape function /c in

terms of x and y using Eq. (19), the resulting equation is a quadratic in /c (see Appendix A.1 for a specific

example):
a/2
c � bðx; yÞ/c þ cðx; yÞ ¼ 0; ð21Þ
where the coefficients are polynomials in (x; y):
a ¼ ðMðd; a; bÞ � Mða; b; cÞÞðMðd; a; bÞ � Mðc; d; aÞÞ;
bðx; yÞ ¼ Mðd; a; bÞ2 � Mð~x; d; aÞðMðd; a; bÞ � Mða; b; cÞÞ � Mð~x; a; bÞðMðd; a; bÞ � Mðc; d; aÞÞ;
cðx; yÞ ¼ Mð~x; d; aÞMð~x; a; bÞ:

ð22Þ
The coefficient a is constant, bðx; yÞ is linear and cðx; yÞ is quadratic in x and y. The area coordinate rep-

resentation (Eq. (21)) shows that the quantities must be positive within any non-concave shape. If the shape

is non-concave the areas described by Mði; j; kÞ are zero or positive if the node numbering is in a positive
sense.

3.1. Quadrilateral test case

The quadrilateral element can exhibit skewness, concavity and a side-node. The isoparametric trans-

formation applies only to non-concave shapes.

In a parallelogram ða; b; c; dÞ the subtriangles created by connecting opposite vertices are equal in area

(see Fig. 4):
Mðd; a; bÞ ¼ Mða; b; cÞ and Mðd; a; bÞ ¼ Mðc; d; aÞ:



a

b

c

d

Fig. 4. Parallelogram.
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For the parallelogram, the constant a is zero and The equation for bðx; yÞ is constant:
bðx; yÞ ¼ Mðd; a; bÞ2:

For this case, the shape functions derived using projective geometry and parametric coordinates are the

same. The shape function is indeed a polynomial:
/aðx; yÞ ¼
Mð~x; d; aÞMð~x; a; bÞ

Mðd; a; bÞ2
; ð23Þ
also,
s ¼ Mð~x; d; aÞ
Mðd; a; bÞ and t ¼ Mð~x; a; bÞ

Mðd; a; bÞ : ð24Þ
In a trapezoid ða; b; c; dÞ, see Fig. 5, the subtriangles created by connecting opposite vertices are equal in

area:
Mðd; a; bÞ ¼ Mðc; d; aÞ:
a

b

c

d

Fig. 5. Trapezoid.
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Again, the constant a is zero. Similarly:
bðx; yÞ ¼ Mðd; a; bÞ2 � Mð~x; d; aÞðMðd; a; bÞ � Mða; b; cÞÞ:
For the trapezoidal case, the shape function found using projective geometry and parametrized coordinates

are equal. The shape function is in rational polynomial form:
/aðx; yÞ ¼
Mð~x; d; aÞMð~x; a; bÞ

Mðd; a; bÞ2 � Mð~x; d; aÞðMðd; a; bÞ � Mða; b; cÞÞ
: ð25Þ
For a quadrilateral with no parallel sides a is not zero. For a convex quadrilateral the solution can be

constructed as a rational polynomial using the Wachspress method. Or, a result can be found using

parametrized coordinates as the branching solution of the roots of a quadratic equation:
/aðx; yÞ ¼
bðx; yÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðx; yÞ2 � 4acðx; yÞ

q
2a

: ð26Þ
On a convex skew quadrilateral the boundary conditions are not satisfied by booth roots. On the boundary

da and ba the linear terms vanish and bðx; yÞ > 0. The negative root is zero, (bðx; yÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðx; yÞ2

q
¼ 0) and

the positive root is a positive constant (bðx; yÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðx; yÞ2

q
¼ 2Mðd; a; bÞ2). Along the boundary bc (Fig. 6):
Mð~x; d; aÞ ! ð1� tÞMðb; d; aÞ þ tMðc; d; aÞ;
Mð~x; a; bÞ ! ð1� tÞMðb; a; bÞ þ tMðc; a; bÞ:

ð27Þ
The discriminant term becomes:
Mðd; a; bÞ2Mðc; a; bÞ þ tðMðc; d; aÞ � Mðd; a; bÞÞ2: ð28Þ
The value of the negative root then is linear in t, /cðxbð1� tÞ þ xcðtÞÞ ¼ t. The result is similar for the
boundary cd. The negative root at point c then is unit valued: /cðxc; ycÞ ¼ 1. The negative root satisfies the

boundary conditions:
/cðx; yÞ ¼
bðx; yÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðx; yÞ2 � 4acðx; yÞ

q
2a

: ð29Þ
For a specific example see Appendix A.2.
a

b

c

d

Fig. 6. Skew.
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4. Form of the shape function

In 1975, Wachspress introduced a rational polynomial formulation for finite elements which applies

consistently to any convex n-sided polygon; it does not apply to elements with a side-node. The same
publication describes irrational shape functions (Wachspress, 1975, pp. 245–253). Similar to the isopara-

metric transformation, a shape function is calculated by projecting a three dimensional shape on a two

dimensional plane. Unlike the presented method, Wachspress� three dimensional shape is curved. The shape

function for the side-node is calculated, and promptly canceled out of the representation. The linear

boundary conditions are not captured along the edge with the side-node. Nevertheless, some ingenious,

non-convex, elements with curved sides can be constructed.

Wachspress realized the limitations of the rational polynomial formulation with respect to ‘‘ill-set ele-

ments’’, non-convex polygons and polycons (Wachspress, 1975, p. 247). Just as the polynomial shape
function cannot be applied to more than a few basic shapes, the rational polynomial method also fails when

a polygon is non-convex.

Following the series of Hermite–Pad�e type approximations leads to a quadratic form, and an irrational

shape function. Any piecewise continuous function can be represented by an infinite power series
f ðxÞ ¼
X1
n¼0

anxn; a0 6¼ 0; jxj < R: ð30Þ
The Pad�e approximate of the same function can be written as:
Xk
n¼0

bnx
nf ðxÞ �

Xj
n¼0

cnx
n ¼ Oðxðjþkþ1ÞÞ; ð31Þ
where Oð�Þ is an order operator. The coefficients bi and ci are functions of the coefficients of the power series

ai. The approximation is valid if the function is not evaluated near the denominator zeros (
Pk

n¼0 bnx
n ¼ 0)

(Shafer, 1974). The zeros of the denominator lie strictly outside the convex polygonal domain in the ra-

tional polynomial representation (Wachspress, 1975).

A polynomial representation cannot satisfy the boundary conditions of a polygon which is not suffi-

ciently symmetric. The rational polynomial form cannot be used to satisfy the boundary conditions in a
non-convex polygon. The next order construction is known as the Quadratic Shafer or Hermite–Pad�e
approximate:
Xl
n¼0

anxnf ðxÞ �
Xk
n¼0

bnx
nf ðxÞ þ

Xj
n¼0

cnx
n ¼ Oðxðjþkþlþ2ÞÞ: ð32Þ
The evaluation of the approximation is valid only away from the singularities
Pl

n¼0 anx
n ¼ 0, and along the

branch which satisfies the boundary conditions (Shafer, 1974). For the presented rational polynomial

representation within a quadrilateral, the a polynomial is a constant and the branch which satisfies the

boundary conditions exactly can be determined (see Eq. (29)). Using the irrational polynomial represen-

tation a convex polygon with any number of side-nodes and linear boundary conditions can be described.

Accordingly higher order behaviors can be modeled on any non-concave two dimensional domain without
compromising the smoothness and boundedness requirements necessary for the representation of tem-

perature distributions.



2174 E.A. Malsch, G. Dasgupta / International Journal of Solids and Structures 41 (2004) 2165–2188
5. Side-node

If the quadrilateral degenerates into an element with a side-node the Wachspress convex polygon method

fails. The constant coefficient which weights the side-node becomes zero: Mð2; 3; 4Þ ¼ 0. Accordingly, the
shape function for the side-node is N3ðx; yÞ ¼ 0. Let point fxc; ycg be the side-node located a distance u
along line bd:
fxc; ycg ¼ fxb; ybgð1� uÞ þ fxd ; ydgu: ð33Þ

The parametrized coordinate method produces the following coefficients:
a ¼ uð1� uÞ;

bðx; yÞ ¼ u
Mð~x; a; bÞ
Mðd; a; bÞ þ ð1� uÞMð~x; d; aÞ

Mðb; d; aÞ � 1;

cðx; yÞ ¼ Mð~x; d; aÞ
Mðb; d; aÞ

Mð~x; a; bÞ
Mðd; a; bÞ :

ð34Þ
Choose the branch which satisfies the nodal point values (see Eq. (29)). Test to make sure this side-node

formulation satisfies the shape function conditions, Eqs. (1), (2) and (4).
Evaluating at the nodal points (note 0 < u < 1):
/cðxa; yaÞ ¼
1�

ffiffiffi
1

p

uð1� uÞ ¼ 0; /cðxb; ybÞ ¼
u�

ffiffiffiffiffi
u2

p

uð1� uÞ ¼ 0;

/cðxc; ycÞ ¼
2uð1� uÞ �

ffiffiffi
0

p

2uð1� uÞ ¼ 1; /cðxd ; ydÞ ¼
ð1� uÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� uÞ2

q
2uð1� uÞ ¼ 0:

ð35Þ
Along the boundary, the coefficient cðx; yÞ is zero valued along the boundaries from point-(a) to point-(b)
and from point-(d) to point-(a):
bðx; yÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðx; yÞ2

q
¼ 0; 8 bðx; yÞP 0 and a 6¼ 0: ð36Þ
Along the boundary from point-(b) to point-(d):
ðt þ u� 2utÞ � jt � uj
2uð1� uÞ ; ð37Þ
the function is zero when t ¼ 0 and t ¼ 1, single valued at t ¼ u and otherwise linear along the boundary.

Solving for the remaining shape functions using the same method as for /cðx; yÞ, find:
/aðx; yÞ ¼
Mð~x; b; dÞ
Mða; b; dÞ ; /bðx; yÞ ¼

Mð~x; d; aÞ
Mða; b; dÞ � ð1� uÞ/cðx; yÞ and

/dðx; yÞ ¼
Mð~x; a; bÞ
Mða; b; dÞ � u/cðx; yÞ: ð38Þ
The constant and linear fields can be reproduced according to Eq. (4).

The formulation applies even when the side-node and vertex node overlap. If the side-node degenerates

into a triangle then the constant a ¼ 0. The resulting shape function is valid. It satisfies the boundary

conditions and is bounded.
u ¼ 1 : /aðx; yÞ ¼
Mð~x; b; cÞMð~x; c; dÞ

Mðd; b; cÞðMðd; b; cÞ � Mð~x; c; dÞÞ : ð39Þ
Only the boundary point where d ¼ c is ill behaved.
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5.1. Extended side-node formulation

The requirements for a general construction of the side-node formulation are boundedness and the

linearity requirement (see Eq. (4)). Eq. (34) can be rewritten such that the shape functions depend only on
the parameter u and the shape functions for the triangle Nið~xÞ. Consequently, the extent to which the

conditions are satisfied depends on the shape functions for the 3-noded triangle without a side-node.
Nið~xÞ ¼
Mð~x; j; kÞ
Mði; j; kÞ where 06Nið~xÞ6 1 for all points ~x in the triangle Mði; j; kÞ: ð40Þ
The shape functions Niðx; yÞ are single valued only at each named node ðiÞ. On all boundary edges which are

not adjacent to node ðiÞ the value of the function Niðx; yÞ is zero. Any shape function /i which is similarly

bounded and satisfies these boundary conditions on a domain X can be used to construct a bounded and
smooth shape function for any side-node located on the boundary of X.

The four-noded triangle formulation can be extended to any domain where the shape functions for the

parent element, without the side-node, is known (see Fig. 7). The shape function for the first side-node

is defined in terms of the vertex nodes which share the boundary with the side-nodes.
/k ¼
ð1� ð1� uÞ/�

i � u/�
i�1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ð1� uÞ/�

i � u/�
i�1Þ

2 � 4u/�
i�1ð1� uÞ/�

i

q
2uð1� uÞ : ð41Þ
The new shape functions for the parent nodes are updated with respect to the side-node:
/i ¼ /�
i � ð1� uÞ/k and /i�1 ¼ /�

i�1 � u/k: ð42Þ

No other shape functions are affected. The integration method applied to the encompassing shape without

side-nodes can be applied directly to the domain. The discontinuity in slope occurring at the side-node does

not prevent integration. Applying this method recursively allows for the representation of any number of

side-nodes on any n-gon figure (see Figs. 8–10 and the example in Appendix A.4).

The discriminant is positive if /�
i and /�

i�1 are appropriate shape functions for the parent element:
ð1� ð1� uÞ/�
i � u/�

i�1Þ
2
>̂4u/�

i�1ð1� uÞ/�
i : ð43Þ
If the parent functions are smooth, bounded and linear on the boundary and single valued only at their

respective named nodes, then their sum must be bounded:
06/�
i þ /�

i�1 6 1: ð44Þ
Fig. 7. Side-node shape functions.



Fig. 8. One side-node influence.

Fig. 9. Many influences.

Fig. 10. Selected shape functions for a pentagonal element with side-nodes.
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The parameter u is necessarily bounded between 0 and 1 (see Eq. (33)). The worst comparison occurs for
the largest values for the shape functions, let /�

i�1 ¼ s and largest /�
i ¼ ð1� sÞ:



Fig. 11. Shape functions for the vertex of a triangle.
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ð1� ð1� uÞð1� sÞ � usÞ2 P 4uð1� uÞsð1� sÞ: ð45Þ

The expression simplifies to:
ðs� uÞ2 P 0: ð46Þ
The discriminant is greater than zero throughout the domain and equal to zero only at the side-node where

s ¼ u. Consequently any interpolations which are smooth and bounded over a given domain can be
combined to construct the shape function for any side-node. For an example construction see Figs. 11 and

12.
6. Conductivity matrix

Convergent shape functions and consistent strain matrices can be formulated for all non-concave

quadrilaterals. For the temperature distribution application, the governing operator is the Laplacian.
r2uðx; yÞ ¼ 0: ð47Þ



Fig. 12. Shape functions for the side-node of a triangle.
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The heat sources applied along the boundary are given by a function f ðtÞ where t is a parameter which

travels along the boundary of the polygon. Along a given side ij:
x ¼ tðijÞxi þ ð1� tðijÞÞxj and y ¼ tðijÞyi þ ð1� tijÞyj: ð48Þ
Let the heat distribution uðx; yÞ be approximated by an interpolation function Ni over a polygonal domain

with m sides and p side-nodes:
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uðx; yÞ �
Xmþp

i¼1

uiNiðx; yÞ; ð49Þ
where, ui ¼ uðxi; yiÞ.
The conductivity matrix is constructed as follows:
hij ¼
oNiðx; yÞ

ox
oNjðx; yÞ

ox
þ oNiðx; yÞ

oy
oNjðx; yÞ

oy
: ð50Þ
Integrating over the domain:
Sij ¼
Z
A
hij dA: ð51Þ
Integration can be performed over any polygonal domain according to the divergence theorem (Dasgupta,

2003a). Overcoming the algebraic and numerical difficulties associated with integrating a function con-

taining boundary singularities on a convex domain is the subject of further research. Only examples

on square domains are presented.

The conductivity matrix constructed from such a formulation is defined by n� 1 positive eigenvalues

and one zero eigenvalue corresponding to the constant temperature condition. For problems of heat flow
where boundary temperatures, not heat sources, are given the irrational interpolation allows for a smooth

and bounded guess as to the interpolation of heat values over any polygonal domain.

6.1. Test case

Let the temperature distribution in a homogenous medium be governed by:
r2uðx; yÞ ¼ 0; ð52Þ

and boundary conditions
uðH ; yÞ ¼ 0; uð0; yÞ ¼ 0; uðx; 0Þ ¼ sin
px
h

� �
and uðx; LÞ ¼ 0: ð53Þ
The unique solution to this toy problem on a rectangular domain height H ¼ 1 and length L ¼ 1 is:
uðx; yÞ ¼ sinðpxÞ sinhðpð1� yÞÞ
sinhðpÞ : ð54Þ
See Fig. 13.

An approximate solution, based on four nodal points, can be constructed using the following shape

functions:
fð�1þ xÞð�1þ yÞ; x� xy; xy; y � xyg: ð55Þ

The conductivity matrix is:
½S�4 ¼

4
3

� 1
3

� 	
� 2

3

� 	
� 1

3

� 	
� 1

3

� 	
4
3

� 1
3

� 	
� 2

3

� 	
� 2

3

� 	
� 1

3

� 	
4
3

� 1
3

� 	
� 1

3

� 	
� 2

3

� 	
� 1

3

� 	
4
3

0
BBBB@

1
CCCCA: ð56Þ
The eigenvalues are:
eigð½S�4Þ ! f0; 1:33; 2; 2g: ð57Þ



Fig. 13. Exact temperature distribution.

Fig. 14. Four nodes.
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The constant temperature case is captured. Matrix [S] is singular as expected. The approximation does not

capture any quadratic or higher order features of the solution (see Fig. 14).

A five noded element makes a better approximation. The shape functions are:
1þ 2xð�1þ yÞ � 3y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4xð�1þ yÞ2 þ 4x2ð�1þ yÞ2 þ ð1þ yÞ2

q
2

;

8<
:

1þ y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4xð�1þ yÞ2 þ 4x2ð�1þ yÞ2 þ ð1þ yÞ2

q
;

�1� 2xð�1þ yÞ � y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4xð�1þ yÞ2 þ 4x2ð�1þ yÞ2 þ ð1þ yÞ2

q
2

;

xy; y � xy

9=
;: ð58Þ
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The conductivity matrix is:
½S�5 ¼

1:39761 �0:630998 �0:247489 �0:427037 �0:0920873
�0:630998 2:21375 �0:630998 �0:475875 �0:475875
�0:247489 �0:630998 1:39761 �0:0920873 �0:427037
�0:427037 �0:475875 �0:0920873 1:33 �0:335
�0:0920873 �0:475875 �0:427037 �0:335 1:33

0
BBBB@

1
CCCCA: ð59Þ
Its eigenvalues are:
eigð½S�5Þ ! f2:79; 2:00; 1:57; 1:32; 0g: ð60Þ
Again the singularity is preserved. The non-linear features of the solution also begin to be represented (see
Fig. 15).

The arrangement of nodes need not be symmetric (see Fig. 16). For a six noded element the shape

functions are:
Fig. 15. Five nodes.

Fig. 16. Six nodes.
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1þ 2xð�1þ yÞ � 3y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4xð�1þ yÞ2 þ 4x2ð�1þ yÞ2 þ ð1þ yÞ2

q
2

;

8<
:

1þ y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4xð�1þ yÞ2 þ 4x2ð�1þ yÞ2 þ ð1þ yÞ2

q
;

�3þ xð3� 2yÞ � y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4xð�1þ yÞ2 þ 4x2ð�1þ yÞ2 þ ð1þ yÞ2

q
2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xþ x2

1

4
þ ð�1þ yÞy

� �s
;

2� x� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xþ x2

1

4
þ ð�1þ yÞy

� �s
; � 1þ x

1

2

�
þ y
�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xþ x2

1

4
þ ð�1þ yÞy

� �s
; y � xy

9=
;:

ð61Þ
The conductivity matrix is:
½S�6 ¼

1:39761 �0:630998 �0:124766 �0:245446 �0:304315 �0:0920873
�0:630998 2:21375 �0:377704 �0:506588 �0:222581 �0:475875
�0:124766 �0:377704 1:37868 �0:719549 0:0197986 �0:176432
�0:245446 �0:506588 �0:719549 2:95404 �0:981247 �0:50121
�0:304315 �0:222581 0:0197986 �0:981247 1:57277 �0:0843947
�0:0920873 �0:475875 �0:176432 �0:50121 �0:0843947 1:33

0
BBBBBB@

1
CCCCCCA
: ð62Þ
The eigenvalues are:
eigð½S�6Þ ! f3:73; 2:71; 1:57; 1:5; 1:32; 0g: ð63Þ

The singularity is preserved.

Any number of side-nodes can be added to improve the solution. For example the eight noded element

(Fig. 17) and the 12 noded element, (Fig. 18). The associated eigenvalues of each conductivity matrix is:
eigð½S�8Þ ! f2:76; 2:06; 2:06; 1:83; 1:23; 1:08; 1:08; 0g ð64Þ

and
eigð½S�12Þ ! f2:34; 2:08; 2:08; 1:87; 1:49; 1:28; 1:28; 1:26; 0:99; 0:81; 0:81; 0g: ð65Þ
Fig. 17. Eight nodes.



Fig. 18. Twelve nodes.
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All of the solutions preserve the zero energy conditions. Notice also the eigenvalues are within the same

magnitude and all lie between two positive constants, 1/2 and 4.

A solution constructed using Lagrange interpolates does not preserve the singularity of the conductivity
matrix and predicts greater negative values along the boundary:
eigð½S�8l Þ ¼ f5:33; 4:18; 4:18; 2:57; 1:33; 1:02; 1:02; 0:98g ð66Þ
and
eigð½S�12l Þ ¼ f7:81; 6:46; 6:46; 3:92; 3:38; 2:89; 2:89; 2:53; 1:06; 1:06; 1:03; 1:01g: ð67Þ
The eigenvalues are all positive, but the zero energy condition is not captured. Also the eight node element
solution looks qualitatively closer to the actual one than the 12 node element solution does (see Figs. 19 and

20). Also, the positive eigenvalues lie in a wider range, between 1/2 and 8.

All the approximations predict negative values within the domain. For the linear edged approximation,

as nodes are added higher order behaviors of the domain are captured and the predicted behavior becomes

less negative. The range of values predicted for the temperature distribution over the square domain are

presented in Table 2.

For the side-node formulation, as the number of nodes increases the maximum negative value seems to

tend to zero and the area over which the solution is negative within the domain decreases. While the
Fig. 19. Eight node.



Fig. 20. Twelve node.

Table 2

Range of predicted boundary values

Side-node formulation Lagrange element

4 node f�0:32; 0:32g f�0:32; 0:32g
5 node f�0:23; 0:50g –

6 node f�0:23; 0:54g –

8 node f�0:20; 0:52g f�0:25; 1:11g
12 node f�0:20; 0:48g f�0:22; 0:82g
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magnitude of the most negative point in the domain for eight node and 12 node representations is equal,

much larger segments of the eight node element boundary are negative than the 12 node element. Alter-

natively, in the Lagrange element formulation the 12 node element contains more negative values in the

interior of the domain than the eight node Lagrange element. The Lagrange element converges to the

correct solution in an oscillatory manner, this pathology has been observed in other applications as well
(MacNeal, 1993).

Also the range of values discovered using the side-node formulation is between 0.64 and 0.88, the range

for the Lagrange element is between 0.64 and 1.36 and the maximum value in the solution is 1. In this

example the side-node reproduces the bounds of the solution more closely than the Lagrange element

method does.

The solutions were constructed using Mathematica, the integration is performed algebraically for the

four node case and numerically using Gaussian Quadrature for the more than four node cases. The stability

of numerical integration decreases around the singular boundary points. Nevertheless, careful integration
can return convergent results. The computation time was equivalent for the Lagrange and exact side-node

elements for the given number of nodes.
7. Conclusion

The form of the finite element shape function cannot be limited to a polygonal form if the domain being

described is neither triangular nor rectangular. Rational polynomials and square roots of polynomials

provide a consistent and conformal shape function basis for non-concave shapes. Consequently, this study
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extends the class of elements for which closed form shape functions can be constructed. By resisting tes-

sellation of the domain, a higher order representation is possible. Such elements can be applied to boundary

value problems including temperature distributions. Unlike Lagrange element formulations, the singularity

of the conductivity matrix is preserved.
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Appendix A. Examples

The isoparametric transformation in x–y coordinates and the smooth side-node representation can be

derived algebraically. Some test cases are included.

A.1. Algebraic transformation

Solving for the shape function for a parallelogram in local Cartesian coordinates, let the points a, b, c
and d be located at the following points respectively:
ff�1; 0g; f0;�1g; f1; 0g; f0; 1gg:

Using Eq. (19):
x ¼ ð�1Þ � ð1� nÞð1� gÞ
4

þ ð1Þ � ð1þ nÞð1þ gÞ
4

¼ gþ f
2

;

y ¼ ð�1Þ � ð1þ nÞð1� gÞ
4

þ ð1Þ � ð1� nÞð1þ gÞ
4

¼ g� f
2

:

Solving for n and g in terms of x and y:
n ¼ x� y; g ¼ xþ y and ng ¼ x2 � y2:
The shape function is a polynomial.

For the shape function of a trapezoid in local Cartesian coordinates, let the points a, b, c and d be

located at the following points respectively:
ff0; 0g; f4; 0g; f3; 1g; f2; 1gg:

Using Eq. (19):
x ¼ 9þ gþ 5n� 3gn
4

and y ¼ 1þ g
2

:

Solving for g and n:
n ¼ 4� 2xþ y
�4þ 3y

; g ¼ �1þ 2y and ng ¼ ð4� 2xþ yÞð�1þ 2yÞ
�4þ 3y

:

The shape function is a rational polynomial.
For the shape function of a trapezoid in local Cartesian coordinates, let the points a, b, c and d be

located at the following points respectively:
ff0; 0g; f1; 0g; f2; 1g; f0; 2gg:
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Using Eq. (19):
x ¼ ð3þ gÞð1þ nÞ
4

;

y ¼ �ð1þ gÞð�3þ nÞ
4

:

Solving for g and n:
n ¼ 1þ xþ y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2xð�2þ yÞ þ ð2þ yÞ2

q
;

g ¼
�4þ xþ y �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2xð�2þ yÞ þ ð2þ yÞ2

q
2

and
ng ¼
�8þ x� 7y � 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2xð�2þ yÞ þ ð2þ yÞ2

q
2

:

The shape function contains the square root of a polynomial, there are two roots.
A.2. Skew quadrilateral by isoparametric transformation and Wachspress formulation

Given a set of test points:
ffxa; yag; fxb; ybg; fxc; ycg; fxd ; ydgg ¼ ff0; 0g; f1; 0g; f3=2; 3=2g; f0; 1gg: ðA:1Þ

The shape function /aðx; yÞ found using parametrized coordinates:
5

�
þ xþ y � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 2xð�2þ yÞ þ ð2þ yÞ2

q
; 5þ xþ y þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 2xð�2þ yÞ þ ð2þ yÞ2

q 

: ðA:2Þ
The shape function /aðx; yÞ evaluated at the vertices:
/aðxa; yaÞ ¼ f1; 9g; /aðxb; ybÞ ¼ f0; 12g; /aðxc; ycÞ ¼ f0; 16g and /aðxd ; ydÞ ¼ f0; 12g: ðA:3Þ
Only the first root
bðx;yÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðx;yÞ2�4acðx;yÞ

p
2a satisfies the boundary conditions. The continuous shape function,

derived from the Wachspress method, for the convex domain, satisfying all the boundary conditions, and

the constancy and linearity requirements is:
/aðx; yÞ ¼
�ðð3þ x� 3yÞð�3þ 3x� yÞÞ

3ð3þ xþ yÞ : ðA:4Þ
Consequently, two different valid interpolations can be constructed.
A.3. Triangle with four nodes
ff�1; 0g; f�1=2; 1=4g; f1=2; 3=4g; f0; 2gg: ðA:5Þ
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The associated shape functions are:
/aðx; yÞ ¼
�1� 4x� 4y þ

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�5þ 4xð1þ 3xÞ þ 16y

p
6

;

/bðx; yÞ ¼
11þ 2xþ 8y � 3

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�5þ 4xð1þ 3xÞ þ 16y

p
12

;

/cðx; yÞ ¼
7þ 10x� 8y þ

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�5þ 4xð1þ 3xÞ þ 16y

p
12

;

/dðx; yÞ ¼
�1� xþ 2y

3
:

ðA:6Þ
The functions are smooth within the triangular domain.
A.4. Unit square example

The parametrization of the domain is the same as for the shape functions of the element free of side-
nodes. For example find the shape functions for side-nodes on a unit square from the shape functions at the

vertices for an element with no side-nodes, Eq. (20). For the shape function for a side-node on side 1–2, let u
be u ¼ 0 at node-1 and u ¼ 1 at node-2 and vary linearly along the edge. Substituting into Eq. (41) the

equation for the side-node is:
/m
u ðs; tÞ ¼

�1þ sð1� uþ tð�1þ 2uÞÞ
2uðu� 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2ð�1þ t þ uÞ2 þ 2sð�1þ t þ u� 2tuÞ

q
2uðu� 1Þ : ðA:7Þ
The corresponding shape functions then left and right of the side-node respectively, according to Eq. (42),

are:
/l
uðs; tÞ ¼

�1þ sð1� t þ uÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2ð�1þ t þ uÞ2 þ 2sð�1þ t þ u� 2tuÞ

q
2u

;

/r
uðs; tÞ ¼

1þ sð�1� t þ uÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2ð�1þ t þ uÞ2 þ 2sð�1þ t þ u� 2tuÞ

q
2ðu� 1Þ :

ðA:8Þ
For u ¼ 1=2:
/m
1
2
ðs; tÞ ¼ 2� s� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sþ s2ðt � 1=2Þ2

q
;

/l
1
2
ðs; tÞ ¼ sð3=2� tÞ � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sþ s2ðt � 1=2Þ2

q
;

/r
1
2
ðs; tÞ ¼ sð1=2þ tÞ � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sþ s2ðt � 1=2Þ2

q
:

ðA:9Þ
To derive another shape function for another side-node to the left of the original placed by u let another

parameter v span the distance between the node to the left of the side-node, node-1, and the side-node itself,
node-m. Again, substitute into Eq. (41) to find the shape function. An order of complexity added to the

basis functions then is the square root term.
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